Answer:
The nonzero value of c will be:
Step-by-step explanation:
Given the function
[tex]f\left(x\right)=\:x^2-4x-c[/tex]
[tex]f\left(c\right)=\:c^2-4c-c[/tex]
as
[tex]f(c) = c[/tex]
so
[tex]c=\:c^2-4c-c[/tex]
switching the sides
[tex]c^2-4c-c=c[/tex]
subtract c from both sides
[tex]c^2-4c-c-c=c-c[/tex]
[tex]c^2-6c=0[/tex]
[tex]c\left(c-6\right)=0[/tex]
Using the zero factor principle
[tex]\:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)[/tex]
[tex]c=0\quad \mathrm{or}\quad \:c-6=0[/tex]
so, the solutions to the quadratic equations are:
[tex]c=0,\:c=6[/tex]
Therefore, a nonzero value of c will be: