Respuesta :

Answer:

The nonzero value of c will be:

  • [tex]c = 6[/tex]

Step-by-step explanation:

Given the function

[tex]f\left(x\right)=\:x^2-4x-c[/tex]

[tex]f\left(c\right)=\:c^2-4c-c[/tex]

as

[tex]f(c) = c[/tex]

so

[tex]c=\:c^2-4c-c[/tex]

switching the sides

[tex]c^2-4c-c=c[/tex]

subtract c from both sides

[tex]c^2-4c-c-c=c-c[/tex]

[tex]c^2-6c=0[/tex]

[tex]c\left(c-6\right)=0[/tex]

Using the zero factor principle

[tex]\:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)[/tex]

[tex]c=0\quad \mathrm{or}\quad \:c-6=0[/tex]

so, the solutions to the quadratic equations are:

[tex]c=0,\:c=6[/tex]

Therefore, a nonzero value of c will be:

  • [tex]c = 6[/tex]
ACCESS MORE
EDU ACCESS
Universidad de Mexico