a rectangular sign has a length of 3 and 1/2 ft and width of 1 and 1/8 ft will the area of the sign be greater or less than 3 and 1/2 ft, how do you know? What is the area of the sign?

Respuesta :

Answer:

The area is 3.9375 cubic ft, so yes, the area will greater than 3 and 1/2 ft.

Hope this helps:)

Step-by-step explanation:

Length of a rectangular sign :-

[tex] = 3 \frac{1}{2} \: \: m[/tex]

Width of a rectangular sign :-

[tex] = 1 \frac{1}{8} \: \: m[/tex]

We know that :-

The formula for finding the area of a rectangle is :-

[tex] =\bold{ length \times breadth}[/tex]

Which means :-

The area of the rectangular sign:-

[tex] =3 \frac{1}{2} \times 1 \frac{1}{8} [/tex]

[tex] = \frac{(2 \times 3 )+ 1}{2} \times \frac{(8 \times 1) + 1}{8} [/tex]

[tex] = \frac{6 + 1}{2} \times \frac{8 + 1}{8} [/tex]

[tex] = \frac{7}{2} \times \frac{9}{8} [/tex]

[tex] = \frac{7 \times 9}{2 \times 8} [/tex]

[tex] = \frac{63}{16} [/tex]

[tex] ={3 \frac{15}{6} \: \: }[/tex]

[tex] = 3 \frac{15 \div 3}{6 \div 3} [/tex]

[tex] ={ 3 \frac{5}{2} \: m}[/tex]

Thus, the area of the rectangular sign is:-

[tex] =\bold{ 3 \frac{5}{2} \: m}[/tex]

We can see that :-

[tex]\bold{3 \frac{5}{2} \: > 3 \: \frac{1}{2} \: }[/tex]

Which will mean that the area of the rectangular sign is greater than [tex] { 3 \frac{1}{2} \: m}[/tex].

Therefore, the area of the rectangular sign is = [tex] \bold{ 3 \frac{5}{2} \: m}[/tex] and it is greater than [tex] \bold{ 3 \frac{1}{2} \: m}[/tex] .

ACCESS MORE