Respuesta :
Answer:
The area is 3.9375 cubic ft, so yes, the area will greater than 3 and 1/2 ft.
Hope this helps:)
Step-by-step explanation:
Length of a rectangular sign :-
[tex] = 3 \frac{1}{2} \: \: m[/tex]
Width of a rectangular sign :-
[tex] = 1 \frac{1}{8} \: \: m[/tex]
We know that :-
The formula for finding the area of a rectangle is :-
[tex] =\bold{ length \times breadth}[/tex]
Which means :-
The area of the rectangular sign:-
[tex] =3 \frac{1}{2} \times 1 \frac{1}{8} [/tex]
[tex] = \frac{(2 \times 3 )+ 1}{2} \times \frac{(8 \times 1) + 1}{8} [/tex]
[tex] = \frac{6 + 1}{2} \times \frac{8 + 1}{8} [/tex]
[tex] = \frac{7}{2} \times \frac{9}{8} [/tex]
[tex] = \frac{7 \times 9}{2 \times 8} [/tex]
[tex] = \frac{63}{16} [/tex]
[tex] ={3 \frac{15}{6} \: \: }[/tex]
[tex] = 3 \frac{15 \div 3}{6 \div 3} [/tex]
[tex] ={ 3 \frac{5}{2} \: m}[/tex]
Thus, the area of the rectangular sign is:-
[tex] =\bold{ 3 \frac{5}{2} \: m}[/tex]
We can see that :-
[tex]\bold{3 \frac{5}{2} \: > 3 \: \frac{1}{2} \: }[/tex]
Which will mean that the area of the rectangular sign is greater than [tex] { 3 \frac{1}{2} \: m}[/tex].
Therefore, the area of the rectangular sign is = [tex] \bold{ 3 \frac{5}{2} \: m}[/tex] and it is greater than [tex] \bold{ 3 \frac{1}{2} \: m}[/tex] .