Respuesta :

Given:

The value is [tex]\log_7t[/tex].

To find:

The value as a base 2 logarithm.

Solution:

We know that,

[tex]\log_xy=\dfrac{\log_ay}{\log_ax}[/tex]

where, a is any positive value.

We have,

[tex]\log_7t[/tex]

Using the above property of logarithm, we get

[tex]\log_7t=\dfrac{\log_at}{\log_a7}[/tex]

For a=2,

[tex]\log_7t=\dfrac{\log_2t}{\log_27}[/tex]

Therefore, the given value as a base 2 logarithm can be written as [tex]\dfrac{\log_2t}{\log_27}[/tex].

Answer:

log2t/log2^7

Step-by-step explanation:

(what the other dude said)

ACCESS MORE
EDU ACCESS
Universidad de Mexico