Respuesta :
Answer:
Option 2 - P=1/ square root of 4 and W=1/square root of 9
Step-by-step explanation:
To find : For Which Value of P and W is P+W a rational number ?
Solution :
Solving each expression,
1) P= 1/ square root of 3 and W=1/square root of 6
i.e. [tex]P=\frac{1}{\sqrt{3}}[/tex] and [tex]W=\frac{1}{\sqrt{6}}[/tex]
[tex]P+W=\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{6}}[/tex]
[tex]P+W=\frac{\sqrt2+1}{\sqrt{6}}[/tex]
[tex]P+W=0.985598559...[/tex]
It is an irrational number.
2) P=1/ square root of 4 and W=1/square root of 9
i.e. [tex]P=\frac{1}{\sqrt{4}}[/tex] and [tex]W=\frac{1}{\sqrt{9}}[/tex]
[tex]P+W=\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{9}}[/tex]
[tex]P+W=\frac{1}{2}+\frac{1}{3}[/tex]
[tex]P+W=\frac{5}{6}[/tex]
[tex]P+W=0.833333.....[/tex]
It is a rational number as repeating decimal.
3) P=1/square root of 6 and W=1/square root of 10
i.e. [tex]P=\frac{1}{\sqrt{6}}[/tex] and [tex]W=\frac{1}{\sqrt{10}}[/tex]
[tex]P+W=\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{10}}[/tex]
[tex]P+W=\frac{\sqrt5+\sqrt3}{\sqrt{30}}[/tex]
[tex]P+W=0.724476056.....[/tex]
It is an irrational number.
4) P=1/square root of 25 and W=1/square root of 2
i.e. [tex]P=\frac{1}{\sqrt{25}}[/tex] and [tex]W=\frac{1}{\sqrt{2}}[/tex]
[tex]P+W=\frac{1}{5}+\frac{1}{\sqrt{2}}[/tex]
[tex]P+W=\frac{\sqrt2+5}{5\sqrt{2}}[/tex]
[tex]P+W=0.9071067811.....[/tex]
It is an irrational number.
Therefore, Option 2 is correct.