For Which Value of P and W is P+W a rational number. Tell me how you got that answer
1) P= 1/ square root of 3 and W=1/square root of 6
2)P=1/ square root of 4 and W=1/square root of 9
3)P=1/square root of 6 and W=1/square root of 10
4)P=1/square root of 25 and W=1/square root of 2

Respuesta :

300.02 if you use the square root of 72

Answer:

Option 2 - P=1/ square root of 4 and W=1/square root of 9                                  

Step-by-step explanation:

To find : For Which Value of P and W is P+W a rational number ?

Solution :

Solving each expression,

1) P= 1/ square root of 3 and W=1/square root of 6

i.e. [tex]P=\frac{1}{\sqrt{3}}[/tex] and [tex]W=\frac{1}{\sqrt{6}}[/tex]

[tex]P+W=\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{6}}[/tex]

[tex]P+W=\frac{\sqrt2+1}{\sqrt{6}}[/tex]

[tex]P+W=0.985598559...[/tex]

It is an irrational number.

2) P=1/ square root of 4 and W=1/square root of 9

i.e. [tex]P=\frac{1}{\sqrt{4}}[/tex] and [tex]W=\frac{1}{\sqrt{9}}[/tex]

[tex]P+W=\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{9}}[/tex]

[tex]P+W=\frac{1}{2}+\frac{1}{3}[/tex]

[tex]P+W=\frac{5}{6}[/tex]

[tex]P+W=0.833333.....[/tex]

It is a rational number as repeating decimal.

3) P=1/square root of 6 and W=1/square root of 10

i.e. [tex]P=\frac{1}{\sqrt{6}}[/tex] and [tex]W=\frac{1}{\sqrt{10}}[/tex]

[tex]P+W=\frac{1}{\sqrt{6}}+\frac{1}{\sqrt{10}}[/tex]

[tex]P+W=\frac{\sqrt5+\sqrt3}{\sqrt{30}}[/tex]

[tex]P+W=0.724476056.....[/tex]

It is an irrational number.

4) P=1/square root of 25 and W=1/square root of 2

i.e. [tex]P=\frac{1}{\sqrt{25}}[/tex] and [tex]W=\frac{1}{\sqrt{2}}[/tex]

[tex]P+W=\frac{1}{5}+\frac{1}{\sqrt{2}}[/tex]

[tex]P+W=\frac{\sqrt2+5}{5\sqrt{2}}[/tex]

[tex]P+W=0.9071067811.....[/tex]

It is an irrational number.

Therefore, Option 2 is correct.