Respuesta :
3(x-4)[tex] \geq 5x+2[/tex]
Opening brackets;
3x-12[tex] \geq [/tex]5x+2
Putting like terms together;
3x-5x[tex] \geq 2+12[/tex]
-2x[tex] \geq 14[/tex]
x[tex] \leq -7[/tex]
Opening brackets;
3x-12[tex] \geq [/tex]5x+2
Putting like terms together;
3x-5x[tex] \geq 2+12[/tex]
-2x[tex] \geq 14[/tex]
x[tex] \leq -7[/tex]
3(x – 4) ≥ 5x + 2
3*x - 3*4 ≥ 5x + 2
3x - 12 ≥ 5x + 2
3x - 5x ≥ 2 + 12
-2x ≥ 14
x ≤ 14 / -2 When dividing by a -ve number the sign reverses.
x ≤ -7
3*x - 3*4 ≥ 5x + 2
3x - 12 ≥ 5x + 2
3x - 5x ≥ 2 + 12
-2x ≥ 14
x ≤ 14 / -2 When dividing by a -ve number the sign reverses.
x ≤ -7