contestada

two students are on a balcony 19.6 m above the street. one student throws a ball vertically downward at 14.7 m:ds. at the same instant, the other student throws a ball vertically upward at the samr speed. the second ball just misses the balcony on thr way down.

Respuesta :

A. The difference in the two ball's time in the air is 3 seconds

B. The velocity of each ball as it strikes the ground is 24.5 m/s

C. The balls 0.500 s after they are thrown are 14.7 m apart

Further explanation

Acceleration is rate of change of velocity.

[tex]\large {\boxed {a = \frac{v - u}{t} } }[/tex]

[tex]\large {\boxed {d = \frac{v + u}{2}~t } }[/tex]

a = acceleration ( m/s² )

v = final velocity ( m/s )

u = initial velocity ( m/s )

t = time taken ( s )

d = distance ( m )

Let us now tackle the problem!

Given:

Initial Height = H = 19.6 m

Initial Velocity = u = 14.7 m/s

Unknown:

A. Δt = ?

B. v = ?

C. Δh = ?

Solution:

Question A:

First Ball

[tex]h = H - ut - \frac{1}{2}gt^2[/tex]

[tex]0 = 19.6 - 14.7t - \frac{1}{2}(9.8)t^2[/tex]

[tex]0 = 19.6 - 14.7t - 4.9t^2[/tex]

[tex]4.9t^2 + 14.7t - 19.6 = 0[/tex]

[tex]t^2 + 3t - 4 = 0[/tex]

[tex](t + 4)(t - 1) = 0[/tex]

[tex](t - 1) = 0[/tex]

[tex]\boxed {t = 1 ~ second}[/tex]

Second Ball

[tex]h = H + ut - \frac{1}{2}gt^2[/tex]

[tex]0 = 19.6 + 14.7t - \frac{1}{2}(9.8)t^2[/tex]

[tex]0 = 19.6 + 14.7t - 4.9t^2[/tex]

[tex]4.9t^2 - 14.7t - 19.6 = 0[/tex]

[tex]t^2 - 3t - 4 = 0[/tex]

[tex](t - 4)(t + 1) = 0[/tex]

[tex](t - 4) = 0[/tex]

[tex]\boxed {t = 4 ~ seconds}[/tex]

The difference in the two ball's time in the air is:

[tex]\Delta t = 4 ~ seconds - 1 ~ second[/tex]

[tex]\large {\boxed {\Delta t = 3 ~ seconds} }[/tex]

Question B:

First Ball

[tex]v^2 = u^2 - 2gH[/tex]

[tex]v^2 = (-14.7)^2 + 2(-9.8)(-19.6)[/tex]

[tex]v^2 = 600.25[/tex]

[tex]v = \sqrt {600.25}[/tex]

[tex]\boxed {v = 24.5 ~ m/s}[/tex]

Second Ball

[tex]v^2 = u^2 - 2gH[/tex]

[tex]v^2 = (14.7)^2 + 2(-9.8)(-19.6)[/tex]

[tex]v^2 = 600.25[/tex]

[tex]v = \sqrt {600.25}[/tex]

[tex]\boxed {v = 24.5 ~ m/s}[/tex]

The velocity of each ball as it strikes the ground is 24.5 m/s

Question C:

First Ball

[tex]h = H - ut - \frac{1}{2}gt^2[/tex]

[tex]h = 19.6 - 14.7(0.5) - \frac{1}{2}(9.8)(0.5)^2[/tex]

[tex]\boxed {h = 11.025 ~ m}[/tex]

Second Ball

[tex]h = H + ut - \frac{1}{2}gt^2[/tex]

[tex]h = 19.6 + 14.7(0.5) - \frac{1}{2}(9.8)(0.5)^2[/tex]

[tex]\boxed {h = 25.725 ~ m}[/tex]

The difference in the two ball's height after 0.500 s is:

[tex]\Delta h = 25.725 ~ m - 11.025 ~ m[/tex]

[tex]\large {\boxed {\Delta h = 14.7 ~ m} }[/tex]

Learn more

  • Velocity of Runner : https://brainly.com/question/3813437
  • Kinetic Energy : https://brainly.com/question/692781
  • Acceleration : https://brainly.com/question/2283922
  • The Speed of Car : https://brainly.com/question/568302

Answer details

Grade: High School

Subject: Physics

Chapter: Kinematics

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle

Ver imagen johanrusli