In how many ways can a president, vice president, and secretary be chosen from a class of 20 girls and 30 boys if the president must be a girl and the vice president a boy?

Respuesta :

Given:

Number of girls = 20

Number of boys = 30

The president must be a girl and the vice president a boy

To find:

Number of ways to choose a president, vice president, and secretary.

Solution:

The president must be a girl and the vice president a boy. So, out of three students 1 is girl and 1 is boy. Third student can be a girl or a boy.

Total number of ways = Selecting 2 boys and 1 girl +  Selecting 1 boy and 2 girls

[tex]=^{30}C_2\times ^{20}C_1+^{30}C_1\times ^{20}C_2[/tex]

[tex]=\dfrac{30!}{2!(30-2)!}\times \dfrac{20!}{1!(20-1)!}+\dfrac{30!}{1!(30-1)!}\times \dfrac{20!}{2!(20-2)!}[/tex]

[tex]=\dfrac{30\times 29\times 28!}{2\times 1\times 28!}\times \dfrac{20\times 19!}{19!}+\dfrac{30\times 29!}{29!}\times \dfrac{20\times 19\times 18!}{2\times 1\times 18!}[/tex]

[tex]=\dfrac{30\times 29}{2}\times 20+20\times \dfrac{20\times 19}{2}[/tex]

[tex]=8700+3800[/tex]

[tex]=12500[/tex]

Therefore, the required number of ways is 12500.