3. Rectangle ABCD is shown on the coordinate grid below.
у
10
8 units
12 units
- 10 -8
X
9 units
D
o
7 units

Which is closest to the length of diagonal
AC?

3 Rectangle ABCD is shown on the coordinate grid below у 10 8 units 12 units 10 8 X 9 units D o 7 units Which is closest to the length of diagonal AC class=

Respuesta :

Answer:

A. 8 units

Step-by-step explanation:

Coordinates of A = (-2, -2)

Coordinates of C = (5, 2)

Use distance formula, [tex] d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex] to calculate the length of diagonal [tex] \overline{AC} [/tex].

Let,

[tex] A(-2, -2) = (x_1, y_1) [/tex]

[tex] C(5, 2) = (x_2, y_2) [/tex]

[tex] d = \sqrt{(5 -(-2))^2 + (2 -(-2))^2} [/tex]

[tex] d = \sqrt{(7)^2 + (4)^2} [/tex]

[tex] d = \sqrt{49 + 16} = \sqrt{65} [/tex]

[tex] d = 8.1 [/tex] (nearest tenth)

Therefore, the closest to the length of diagonal [tex] \overline{AC} = 8 units [/tex]