Answer:
A. 8 units
Step-by-step explanation:
Coordinates of A = (-2, -2)
Coordinates of C = (5, 2)
Use distance formula, [tex] d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex] to calculate the length of diagonal [tex] \overline{AC} [/tex].
Let,
[tex] A(-2, -2) = (x_1, y_1) [/tex]
[tex] C(5, 2) = (x_2, y_2) [/tex]
[tex] d = \sqrt{(5 -(-2))^2 + (2 -(-2))^2} [/tex]
[tex] d = \sqrt{(7)^2 + (4)^2} [/tex]
[tex] d = \sqrt{49 + 16} = \sqrt{65} [/tex]
[tex] d = 8.1 [/tex] (nearest tenth)
Therefore, the closest to the length of diagonal [tex] \overline{AC} = 8 units [/tex]