Answer:
The expected number of boys a family might have is 2.5.
Step-by-step explanation:
Let X denote the number of boys in a family with 5 children.
The probability of a boy is, p = 0.50.
The child can either be a by or a girl independently.
The random variable X follows a binomial distribution with parameters n = 5 and p = 0.50.
The probability mass function is:
[tex]p_{X}(x)={5\choose x}(0.50)^{x}(1-0.50)^{5-x};\ x=0,1,2...5[/tex]
Compute the expected number of boys a family might have as follows:
[tex]E(X)=\sum x\cdot p_{X}(x)[/tex]
x p (x) x · p (x)
0 [tex]p(0)={5\choose 0}(0.50)^{0}(1-0.50)^{5-0}=0.03125[/tex] [tex]0\times 0.03125=0[/tex]
1 [tex]p(1)={5\choose 1}(0.50)^{1}(1-0.50)^{5-1}=0.15625[/tex] [tex]1\times 0.15625=0.15625[/tex]
2 [tex]p(2)={5\choose 2}(0.50)^{2}(1-0.50)^{5-2}=0.3125[/tex] [tex]2\times 0.3125=0.625[/tex]
3 [tex]p(3)={5\choose 3}(0.50)^{3}(1-0.50)^{5-3}=0.3125[/tex] [tex]3\times 0.3125=0.9375[/tex]
4 [tex]p(4)={5\choose 4}(0.50)^{4}(1-0.50)^{5-4}=0.15625[/tex] [tex]4\times 0.15625=0.625[/tex]
5 [tex]p(5)={5\choose 5}(0.50)^{5}(1-0.50)^{5-5}=0.03125[/tex] [tex]5\times 0.03125=0.15625[/tex]
Then,
[tex]E(X)=\sum x\cdot p_{X}(x)[/tex]
[tex]=0+0.15625+0.625+0.9375+0.625+0.15625\\\\=2.5[/tex]
Thus, the expected number of boys a family might have is 2.5.