Answer:
The length of the segment F'G' is 7.
Step-by-step explanation:
From Linear Algebra we define reflection across the y-axis as follows:
[tex](x',y')=(-x, y)[/tex], [tex]\forall\, x, y\in \mathbb{R}[/tex] (Eq. 1)
In addition, we get this translation formula from the statement of the problem:
[tex](x',y') =(x-3,y+2)[/tex], [tex]\forall \,x,y\in \mathbb{R}[/tex] (Eq. 2)
Where:
[tex](x, y)[/tex] - Original point, dimensionless.
[tex](x', y')[/tex] - Transformed point, dimensionless.
If we know that [tex]F(x,y) = (-2, 4)[/tex] and [tex]G(x,y) = (-2,-3)[/tex], then we proceed to make all needed operations:
Translation
[tex]F''(x,y) = (-2-3,4+2)[/tex]
[tex]F''(x,y) = (-5,6)[/tex]
[tex]G''(x,y) = (-2-3,-3+2)[/tex]
[tex]G''(x,y) = (-5,-1)[/tex]
Reflection
[tex]F'(x,y) = (5, 6)[/tex]
[tex]G'(x,y) = (5,-1)[/tex]
Lastly, we calculate the length of the segment F'G' by Pythagorean Theorem:
[tex]F'G' = \sqrt{(5-5)^{2}+[(-1)-6]^{2}}[/tex]
[tex]F'G' = 7[/tex]
The length of the segment F'G' is 7.