Respuesta :
Answer:
The resulting induced current if the loop has a resistance of 1.60 is 0.43 mA
Explanation:
First, we will determine the induced emf. The emf is given by
[tex]Emf = - N\frac{\Delta\phi}{\Delta t}[/tex]
Where [tex]N[/tex] is the number of turns
[tex]\Delta\phi[/tex] is the change in magnetic flux
and [tex]\Delta t[/tex] is the change in time
The change in magnetic flux is given by
[tex]\Delta\phi = \phi _{f} - \phi _{i}[/tex]
Where [tex]\phi _{f}[/tex] is the final magnetic flux
and [tex]\phi _{i}[/tex] is the initial magnetic flux
The magnetic flux is given by
[tex]\phi = BA[/tex]
Where [tex]B[/tex] is the magnitude of magnetic field
and [tex]A[/tex] is the area
Therefore,
[tex]\Delta\phi = \phi _{f} - \phi _{i} = B _{f}A - B _{i} A[/tex]
[tex]\Delta\phi = (B _{f} - B _{i})A[/tex]
From the question
[tex]B _{f} = 1.50 T[/tex]
[tex]B _{i} = 0.500 T[/tex]
[tex]A = 7.10 cm^{2} = 0.00071 m^{2}[/tex]
∴ [tex]\Delta\phi = (1.5 - 0.5)(0.00071)[/tex]
[tex]\Delta\phi = 0.00071 Wb[/tex]
From the question
[tex]N = 1[/tex]
[tex]\Delta t= 1.03 s[/tex]
Hence,
[tex]Emf = - N\frac{\Delta\phi}{\Delta t}[/tex] becomes
[tex]Emf = - (1)\frac{0.00071}{1.03}[/tex]
[tex]Emf = 0.000689 V[/tex]
Now, to determine the induced current
From Ohm's law
[tex]Emf = IR[/tex]
Where [tex]I[/tex] is the current
and [tex]R[/tex] is the resistance
∴[tex]I =\frac{Emf}{R}[/tex]
From the question
[tex]R = 1.60[/tex]
Hence,
[tex]I =\frac{0.000689}{1.60}[/tex]
[tex]I = 0.00043 A[/tex]
[tex]I = 0.43 mA[/tex]
Hence, the resulting induced current if the loop has a resistance of 1.60 is 0.43 mA.