Approximate the sum of the convergent infinite series the least usingnumber of terms so that the error is less than .0001. What is the fewest number of terms needed and round your result to three decimal places and state maximum error.

Respuesta :

Solution :

[tex]$\sum_{n=1 }^{\infty } \frac{(-1)^n}{n ! 2^n}$[/tex]           [tex]$a_n= \frac{(-1)^n}{n ! 2^n} \ \ \ \ \ a_{n+1}= \frac{(-1)^{n+1}}{(n+1) ! 2^{n+1}}$[/tex]

Error = [tex]$|a_{n+1}|$[/tex]

Error ≤ 0.0001

[tex]$|\frac{(-1)^{n+1}}{(n+1)!2^{n+1}}| \leq 0.0001$[/tex]

[tex]$|\frac{1}{(n+1)!2^{n+1}}| \leq 10^{-4}$[/tex]

[tex]$(n+1)! 2^{n+1} \geq 10000$[/tex]

Now try, n ≥ 5

[tex]$\sum_{n=1 }^{\infty } \frac{(-1)^n}{n ! 2^n}$[/tex]   = [tex]$\sum_{n=1 }^{5 } \frac{(-1)^n}{n ! 2^n}$[/tex]         (with error 0.0001)

 

[tex]$\sum_{n=1 }^{\infty } \frac{(-1)^n}{n ! 2^n}$[/tex]   = [tex]$\frac{-1}{1!2}+\frac{1}{2!2^2}-\frac{1}{3! 2^3}+\frac{1}{4! 2^4}-\frac{1}{5! 2^5}$[/tex]

[tex]$\sum_{n=1 }^{\infty } \frac{(-1)^n}{n ! 2^n}$[/tex] = 0.6065104