For an F-distribution, find (a) f0.05 with v1 = 7 and v2 = 15; (b) f0.05 with v1 = 15 and v2 = 7: (c) f0.01 with v1 = 24 and v2 = 19; (d) f0.95 with v1 = 19 and v2 = 24; (e) f0.99 with v1 = 28 and v2 = 12.

Respuesta :

fichoh

Answer:

A.) 2.71

B.) 3.51

C.) 2.92

D.) 0.47

E.) 0.35

Step-by-step explanation:

Using the F - distribution table :

find :

(a) f0.05 with v1 = 7 and v2 = 15

α = 0.05 ; v1 = 7 ; v2 = 15

F0.05 = 2.7066

b) f0.05 with v1 = 15 and v2 = 7:

α = 0.05 ; v1 = 15 ; v2 = 7

F0.05 = 3.5107

(c) f0.01 with v1 = 24 and v2 = 19;

α = 0.01 ; v1 = 24 ; v2 = 19

F0.01 = 2.92

(d) f0.95 with v1 = 19 and v2 = 24;

F0.95, (v1 = 19, v2= 24) = 1/[(F(1-0.95), v1=19, v2= 24]

Hence,

1/F0.05, v1 = 19, v2 = 24

= 0.47 (F distribution calculator)

(e) f0.99 with v1 = 28 and v2 = 12

F0.99, (v1 = 28, v2= 12) = 1/[(F(1-0.99), v1=28, v2= 12]

Hence,

1/F0.01, v1 = 28, v2 = 12

= 0.35 (F distribution calculator)

In this exercise we have to calculate the distribution of F , so for certain values ​​we will have:

A.) [tex]F(0.05) = 2.7066[/tex]

B.) [tex]F(0.05) = 3.5107[/tex]

C.) [tex]F(0.01) = 2.92[/tex]

D.) [tex]1/F(0.05)= 0.47[/tex]

E.) [tex]F(0.01)= 0.35[/tex]  

Using the F - distribution table find :

(a) For F equal to 0.05, we have:

[tex]f(0.05)\ with\ v_1 = 7 \ and \ v_2 = 15\\\alpha = 0.05 \ v_1 = 7 \ v_2 = 15\\F(0.05) = 2.7066[/tex]

b)For F equal to 0.05, we have:

[tex]f(0.05) \ with \ v_1 = 15 \ and \ v_2 = 7\\\alpha = 0.05 \ v_1 = 15 \ v_2 = 7\\F(0.05) = 3.5107[/tex]

(c)For F equal to 0.01, we have:

[tex]f(0.01) \ with \ v_1 = 24 \ and \ v_2 = 19\\\alpha = 0.01 \ v_1 = 24 \ v_2 = 19\\F(0.01) = 2.92[/tex]

(d)For F equal to 0.95, we have:

[tex]f(0.95) \ with \ v_1 = 19 \ and \ v_2 = 24\\F(0.95)(v_1 = 19, v_2= 24) = 1/[(F(1-0.95), v_1=19, v_2= 24]\\1/F(0.05)\ v_1 = 19, \ v_2 = 24\\1/F(0.05)= 0.47[/tex]  

(e)For F equal to 0.99, we have:

[tex]f(0.99) \ with \ v_1 = 28 \ and \ v_2 = 12\\F(0.99)(v1 = 28, v2= 12) = 1/[(F(1-0.99), v_1=28, v_2= 12]\\1/F(0.01), v_1 = 28, v_2 = 12\\F(0.01)= 0.35[/tex]

See more about distribution at brainly.com/question/1620226