Answer:
[tex]g^{-1}x = \frac{1-2x}{x}[/tex]
Step-by-step explanation:
Given the function [tex]g(x)= \frac{1}{x+2}[/tex], we are to find the inverse of the function and this can be done y following the simple steps:
Step 1: Replace y with [tex]g(x)[/tex]
[tex]g(x)= \frac{1}{x+2}\\y= \frac{1}{x+2}[/tex]
Step 2: Interchange x with y
[tex]x= \frac{1}{y+2}[/tex]
Step 3: Make y the subject of the formula;
[tex]x= \frac{1}{y+2}\\y+2 = \frac{1}{x}\\y = \frac{1}{x} - 2\\Find \ the\ LCM\\y = \frac{1-2x}{x}[/tex]
Step 4: Replace y as [tex]g^{-1}(x)[/tex]
[tex]g^{-1}x = \frac{1-2x}{x}[/tex]
Hence the inverse of the function is [tex]g^{-1}x = \frac{1-2x}{x}[/tex]