Answer: 20
Step-by-step explanation:
Formula to find the minimum sample size(n) when prior population standard deviation[tex](\sigma)[/tex] is known.
[tex]n=(\dfrac{z^c\times\sigma}{E})^2[/tex], where E = Margin of error , [tex]z^c[/tex]= Critical z-value for c confidence interval.
Given : E = 225 g , [tex]\sigma=600[/tex] g
Critical z value for 90% confidence = 1.645
Now, [tex]n=(\dfrac{1.645\times600}{225})^2[/tex]
[tex]n=(\dfrac{987}{225})^2[/tex]
[tex]n=(4.38666666667)^2=19.2428444\approx20[/tex]
Hence, the required minimum sample size = 20