A manufacturing company produces two sizes of cylindrical containers that each have a height of 50 centimeters. The radius of Container A is 16 centimeters, and the radius of Container B is 25% longer than the radius of Container A. What is the volume, in cubic centimeters, of Container B? Volume of a cylinder = πr^2h, where r is the radius and h is the height

Respuesta :

Answer:

Volume of B=62800[tex]cm^3[/tex]

Step-by-step explanation:

We are given  

Height = 50 cm

Radius of A=16cm

Radius of Cylinder B is 25% more than that of A

Radius of B = 16 + [tex]\frac{25}{100}*16[/tex] cm =16+4= 20 cm

Volume of cylinder B = [tex]pi*r^2*h[/tex]

                                   =[tex]3.14 * (20)^2*50[/tex]

                                    =62800[tex]cm^3[/tex]