Respuesta :

Answer:

[tex]\displaystyle y=\frac{3}{2}x^2-9x+\frac{19}{2}[/tex]

Step-by-step explanation:

Equation of the Quadratic Function

The vertex form of the quadratic function has the following equation:

[tex]y=a(x-h)^2+k[/tex]

Where (h, k) is the vertex of the parabola that results when plotting the function, and a is a coefficient different from zero.

Substituting the coordinates of the vertex (3,-4):

[tex]y=a(x-3)^2-4[/tex]

Now we find the value of a by substituting the point through which the function passes (1,2):

[tex]2=a(1-3)^2-4[/tex]

Operating:

[tex]2=4a-4[/tex]

[tex]4a=6[/tex]

[tex]a=\frac{3}{2}[/tex]

Thus, the equation is:

[tex]\displaystyle y=\frac{3}{2}(x-3)^2-4[/tex]

Expanding the square:

[tex]\displaystyle y=\frac{3}{2}(x^2-6x+9)-4[/tex]

Operating:

[tex]\displaystyle y=\frac{3}{2}x^2-9x+\frac{27}{2}-4[/tex]

Simplifying:

[tex]\boxed{\displaystyle y=\frac{3}{2}x^2-9x+\frac{19}{2}}[/tex]