Respuesta :
x+y+z=855;
x=y+z+50/100•(y+z)=150/100•(y+z);
15(y+z)/10+ y+z=855;
15y+15z+10y+10z=8550;
25(y+z)=8550;
y+z=342;
x=15•342/10=513
Answer:
We have been given the sum of three numbers is 855:
x+y+z=855
And x, is 50%, more than the sum of the other two numbers:
[tex]x=\frac{50}{100}+y+z[/tex]
[tex]x=\frac{1}{2}+y+z[/tex]
[tex]\Rightarrow 2x=y+z[/tex]
Substitute y+z=2x in x+y+z=855
2x+x=855
On simplification:
3x=855
x=285
Hence, the value of x is 285.