Respuesta :
Answer:
[tex]x=24, y=10, z=17[/tex]
Step-by-step explanation:
We know that [tex]\Delta PHS\cong\Delta CNF[/tex].
Then by CPCTC, ∠P≅∠C, ∠H≅∠N, and ∠S≅∠F.
Therefore, let’s solve for each of the angle relations.
∠P≅∠C:
We know that ∠P is 36°. ∠C is (4z-32)°. Therefore:
[tex]36=4z-32[/tex]
Solve for z:
[tex]\begin{aligned}36&=4z-32\;\;\; \text{Add 32 to both sides}\\68&=4z\;\;\;\;\;\;\;\;\;\;\;\text{Divide both sides by 4}\\17&=z\end{aligned}[/tex]
So, the value of z is 17.
∠H≅∠N
∠H is (6x-29) and ∠N is 115. So:
[tex]6x-29=115[/tex]
Solve for x:
[tex]\begin{aligned} 6x-29&=115\;\;\;\;\;\;\text{Add 29 to both sides}\\6x&=144\;\;\;\;\;\;\text{Divide both sides by 4}\\\ x&=24\end{aligned}[/tex]
Therefore, the value of x is 24.
∠S≅∠F
We will need to find ∠S.
We already know that ∠P is 36.
∠H will be (6x-29). Substitute 24 for x to acquire: (6(24)-29)=144-29=115.
A triangle always totals 180°. Therefore, 115+36+∠S=180 or 151+∠S=180.
Therefore, ∠S=29.
∠F is (3y-1). So:
[tex]29=3y-1[/tex]
Solve for y:
[tex]\begin{aligned} 29&=3y-1\;\;\;\;\;\text{Add 1 to both sides}\\ 30&=3y\;\;\;\;\;\;\;\;\;\;\text{Divide both sides by 3}\\ 10&=y\end{aligned}[/tex]
Therefore, the value of y is 10.
So, x=24, y=10, and z=17.
And we are done!