Respuesta :

Answer:

1.386 KJ

Explanation:

From the question given above, the following data were obtained:

Mass (M) of copper = 45 g

Initial temperature (T1) = 20.0°C

Final temperature (T2) = 100.0°C

Heat absorbed (Q) =..?

Next, we shall determine the change in temperature. This can be obtained as follow:

Initial temperature (T1) = 20.0°C

Final temperature (T2) = 100.0°C

Change in temperature (ΔT) =?

ΔT = T2 – T1

ΔT = 100 – 20

ΔT = 80 °C

Next, we shall determine the heat absorbed by the sample of copper as follow:

Mass (M) of copper = 45 g

Change in temperature (ΔT) = 80 °C

Specific heat capacity (C) of copper = 0.385 J/gºC

Heat absorbed (Q) =..?

Q = MCΔT

Q = 45 × 0.385 × 80

Q = 1386 J

Finally, we shall convert 1386 J to KJ. This can be obtained as follow:

1000 J = 1 KJ

Therefore,

1386 J = 1386 J × 1 KJ /1000 J

1386 J = 1.386 KJ

Thus, the heat absorbed by the sample of the sample of copper is 1.386 KJ.