Answer:
[tex]\boxed {d = 5}[/tex]
Step-by-step explanation:
Use the Distance Formula to help you determine the distance between two given points:
[tex]d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}[/tex]
First point: [tex](x_{1}, y_{1})[/tex]
Second Point: [tex](x_{2}, y_{2})[/tex]
-Apply the two given points onto the formula:
First point: [tex](1, 4)[/tex]
Second point: [tex](-2, 0)[/tex]
[tex]d = \sqrt{(-2 - 1)^{2} + (0 - 4)^{2}}[/tex]
-Solve for the distance:
[tex]d = \sqrt{(-2 - 1)^{2} + (0 - 4)^{2}}[/tex]
[tex]d = \sqrt{(-3)^{2} + (-4)^{2}}[/tex]
[tex]d = \sqrt{9 + 16}[/tex]
[tex]d = \sqrt{25}[/tex]
[tex]\boxed {d = 5}[/tex]
Therefore, the distance is [tex]5[/tex].