Respuesta :
Answer:
2[tex]x^{4}[/tex] - 5x² - 63
Step-by-step explanation:
Given
(2x² + 9)(x² - 7)
Each term in the second factor is multiplied by each term in the first factor, that is
2x² (x² - 7) + 9(x² - 7) ← distribute both parenthesis
= 2[tex]x^{4}[/tex] - 14x² + 9x² - 63 ← collect like terms
= 2[tex]x^{4}[/tex] - 5x² - 63
Answer:
[tex]\boxed {2x^{4} - 5x^{2} - 63}[/tex]
Step-by-step explanation:
Solve the following expression:
[tex](2x^{2} + 9) (x^{2} - 7)[/tex]
-Use Distributive Property:
[tex](2x^{2} + 9) (x^{2} - 7)[/tex]
[tex]2x^{4} - 14x^{2} + 9x^{2} - 63[/tex]
-Combine like terms:
[tex]2x^{4} - 14x^{2} + 9x^{2} - 63[/tex]
[tex]\boxed {2x^{4} - 5x^{2} - 63}[/tex]
Therefore, the final answer is [tex]2x^{4} - 5x^{2} - 63[/tex].