Respuesta :

Answer:

2[tex]x^{4}[/tex] - 5x² - 63

Step-by-step explanation:

Given

(2x² + 9)(x² - 7)

Each term in the second factor is multiplied by each term in the first factor, that is

2x² (x² - 7) + 9(x² - 7) ← distribute both parenthesis

= 2[tex]x^{4}[/tex] - 14x² + 9x² - 63 ← collect like terms

= 2[tex]x^{4}[/tex] - 5x² - 63

Answer:

[tex]\boxed {2x^{4} - 5x^{2} - 63}[/tex]

Step-by-step explanation:

Solve the following expression:

[tex](2x^{2} + 9) (x^{2} - 7)[/tex]

-Use Distributive Property:

[tex](2x^{2} + 9) (x^{2} - 7)[/tex]

[tex]2x^{4} - 14x^{2} + 9x^{2} - 63[/tex]

-Combine like terms:

[tex]2x^{4} - 14x^{2} + 9x^{2} - 63[/tex]

[tex]\boxed {2x^{4} - 5x^{2} - 63}[/tex]

Therefore, the final answer is [tex]2x^{4} - 5x^{2} - 63[/tex].