Respuesta :
Answer:
[tex]\boxed {d = \sqrt{29}}[/tex]
Step-by-step explanation:
Use the Distance Formula to help you determine the distance between the two given points:
[tex]d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}[/tex]
First point: [tex](x_{1}, y_{1})[/tex]
Second point: [tex](x_{2}, y_{2})[/tex]
-Apply the given points onto the formula:
First point: [tex](6, 2)[/tex]
Second point: [tex](1, 0)[/tex]
[tex]d = \sqrt{(1 - 6)^{2} + (0 - 2)^{2}}[/tex]
-Solve for the distance:
[tex]d = \sqrt{(1 - 6)^{2} + (0 - 2)^{2}}[/tex]
[tex]d = \sqrt{(-5)^{2} + (-2)^{2}}[/tex]
[tex]d = \sqrt{25 + 4}[/tex]
[tex]\boxed {d = \sqrt{29}}[/tex] (Since the number cannot be square rooted, it would stay the same)
Therefore, the distance is [tex]\sqrt{29}[/tex].