A battleship fires a heavy caliber gun towards a fighter aircraft that flies at an unknown altitude. The maximum speed of a bullet is 520 m/s and height to the exit of the riffle is 9 m. The gun is kept at angle of elevation of 30o .( Ignore air resistance.) (a) Write the position vector r(t)

Respuesta :

Answer:

The position vector [tex]\mathbf{r(t) = (260 \sqrt{3}) \overline i + (260 - \dfrac{1}{2} \ gt^2) \ \overline j }[/tex]

Explanation:

Given that:

The maximum speed of the projection of the bullet = 520 m/s

The height to the exit of the rifle = 9 m

The angle of the elevation = 30°

Taking the vector position with respect to the horizontal axis and vertical axis; we have:

Initial Velocity:

At the horizontal axis

[tex]U_x = 520\ Cos \theta[/tex]

[tex]U_x = 520 Cos 30^0[/tex]

[tex]U_x = 520 Cos \bigg (\dfrac{\sqrt{3}}{2} \bigg)[/tex]

[tex]U_x = 260 Cos \bigg (\sqrt{3} \bigg)[/tex]

At the vertical axis

[tex]U_y = 520\ Sin \theta[/tex]

[tex]U_y = 520\ Sin \bigg (30^0 \bigg)[/tex]

[tex]U_y = 520\ \times \dfrac{1}{2}[/tex]

[tex]U_y =260[/tex]

The displacement in the (x) direction can be computed as:

[tex]x(t) = U_x(t) + \dfrac{1}{2} at^2[/tex]

where; [tex]U_x = 260 \sqrt{3}[/tex]   ; a = 0 ; t = t

[tex]x(t) = 260 \sqrt{3}+ 0[/tex]

[tex]x(t) = 260 \sqrt{3}[/tex]

The displacement in the (y) direction can be computed as:

[tex]y(t) = U_y(t) + \dfrac{1}{2}at^2[/tex]

where;   [tex]U_y =260[/tex] a = -g

[tex]y(t) =260 t- \dfrac{1}{2}gt^2[/tex]

The position vector r(t) = [tex]x \overline i + y \overline j[/tex]

[tex]\mathbf{r(t) = (260 \sqrt{3}) \overline i + (260 - \dfrac{1}{2} \ gt^2) \ \overline j }[/tex]