Given:
[tex]f(n)=2n+10[/tex]
To find:
The sequence and recursive expression to the given explicit expression.
Solution:
We have,
[tex]f(n)=2n+10[/tex]
For n=1,
[tex]f(1)=2(1)+10[/tex]
[tex]f(1)=2+10[/tex]
[tex]f(1)=12[/tex]
The value of f(1) is 12.
Similarly,
For n=2,
[tex]f(2)=2(2)+10=14[/tex]
For n=3,
[tex]f(3)=2(3)+10=16[/tex]
For n=4,
[tex]f(2)=2(4)+10=18[/tex]
The required sequence is {12,14,16,18,...}.
The recursive expression of an AP is
[tex]f(n)=f(n-1)+d[/tex]
where, d is common difference.
Here d=2,
[tex]f(n)=f(n-1)+2[/tex]
Therefore, the recursive expression is [tex]f(n)=f(n-1)+2[/tex].