Given:
DG has endpoints D(-7,-4) and G(8,1).
DJ:JG = 2:3
To find:
The coordinates of J.
Solution:
We have,
DJ:JG = 2:3
It means, point J divides the segment DG is 2:3.
Section formula: If a point divides a lines segment with end point [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] in m:n, then coordinates of point are
[tex]Point=\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)[/tex]
Using section formula, the coordinate of J are
[tex]J=\left(\dfrac{2(8)+3(-7)}{2+3},\dfrac{2(1)+3(-4)}{2+3}\right)[/tex]
[tex]J=\left(\dfrac{16-21}{5},\dfrac{2-12}{5}\right)[/tex]
[tex]J=\left(\dfrac{-5}{5},\dfrac{-10}{5}\right)[/tex]
[tex]J=\left(-1,-2\right)[/tex]
Therefore, the coordinates of J are (-1,-2).