Answer:
P(X<3) = 0.01004
Step-by-step explanation:
From the given information:
Consider the application of Poisson distribution [tex]P(X = x ) = \dfrac{e^{-\lambda} \lambda ^x}{x!}[/tex] with the parameter [tex]\lambda = 8.4[/tex];
Therefore, we can calculate the required probability as follows:
P(X< 3) = P(X = 0) + P(X = 1) + P(X =2)
[tex]P(X< 3) = \dfrac{e^{-8.4} 8.4^0}{0!} + \dfrac{e^{-8.4} 8.4^1}{1!} + \dfrac{e^{-8.4} 8.4^2}{2!}[/tex]
[tex]P(X< 3) =e^{-8.4}( 1 + 8.4+35.28)[/tex]
P(X<3) = 0.01004