An RLC circuit has resistance R = 245 Ω and inductive reactance XL = 385 Ω. HINT (a) Calculate the circuit's capacitive reactance XC (in Ω) if its power factor is cos(ϕ) = 0.707. Ω (b) Calculate the circuit's capacitive reactance XC (in Ω) if its power factor is cos(ϕ) = 1.00. Ω (c) Calculate the circuit's capacitive reactance XC (in Ω) if its power factor is cos(ϕ) = 1.00 ✕ 10−2.

Respuesta :

Answer:

(a) [tex]X_{C}[/tex] = 139.8 Ω

(b) [tex]X_{C}[/tex] = 245 Ω

(c) [tex]X_{C}[/tex] = -24113.8 Ω

Explanation:

Given that: R = 245 Ω, [tex]X_{L}[/tex] = 385 Ω.

But,

cos(ϕ) = [tex]\frac{R}{Z}[/tex]

Where Z is the impedance in the circuit.

(a) when cos(ϕ) = 0.707,

0.707 = [tex]\frac{245}{Z}[/tex]

⇒ Z = [tex]\frac{245}{0.707}[/tex]

       = 346.5346

The impedance of the circuit, Z, is 346.6 Ω.

But,

Z = [tex]\sqrt{R^{2} + (X_{L} - X_{C})^{2} }[/tex]

[tex]Z^{2}[/tex] = [tex]R^{2}[/tex] + [tex](X_{L} - X_{C})^{2}[/tex]

[tex]Z^{2}[/tex] - [tex]R^{2}[/tex] = [tex](X_{L} - X_{C})^{2}[/tex]

[tex]\sqrt{Z^{2} - R^{2} }[/tex] = [tex]X_{L} - X_{C}[/tex]

[tex]X_{C}[/tex] = [tex]X_{L}[/tex] - [tex]\sqrt{Z^{2} - R^{2} }[/tex]

     = 385 - [tex]\sqrt{346.6^{2} - 245^{2} }[/tex]

     = 385 - 245.2

     = 139.8

Therefore, [tex]X_{C}[/tex] is 139.8 Ω.

(b) When cos(ϕ) = 1.00, then;

cos(ϕ) = [tex]\frac{R}{Z}[/tex]

1.00 = [tex]\frac{245}{Z}[/tex]

Z = 245 Ω

The impedance of the circuit is 245 Ω.

So that;

[tex]X_{C}[/tex] = [tex]X_{L}[/tex] - [tex]\sqrt{Z^{2} - R^{2} }[/tex]

     = 245 - 0

     = 245 Ω

The capacitive reactance is 245 Ω. In this circuit, resonance occurs since [tex]X_{L}[/tex] = [tex]X_{C}[/tex].

(c) When cos(ϕ) = 1.00 x [tex]10^{-2}[/tex],

cos(ϕ) = [tex]\frac{R}{Z}[/tex]

1.00 x [tex]10^{-2}[/tex] = [tex]\frac{245}{Z}[/tex]

Z = 24500 Ω

So that:

[tex]X_{C}[/tex] = [tex]X_{L}[/tex] - [tex]\sqrt{Z^{2} - R^{2} }[/tex]

     = 385 - [tex]\sqrt{24500^{2} - 245^{2} }[/tex]

     = 385 -  24498.8

     = -24113.8 Ω

The capacitive reactance is -24113.8 Ω. This implies that the voltage lags behind the current.