Answer:
[tex]MOE_{95} = 1.192\cdot MOE_{90}[/tex]
Step-by-step explanation:
The margin of error is computed using the formula:
[tex]MOE=z_{\alpha/2}\cdot\frac{\sigma}{\sqrt{n}}[/tex]
The critical of z for 95% confidence level and 90% confidence level are:
[tex]z_{0.05/2}=z_{0.025}=1.96\\\\z_{0.10/2}=z_{0.05}=1.645[/tex]
*Use a z-table.
The sample size is n = 44.
Compare the MOE for 95% confidence level and 90% confidence level as follows:
[tex]\frac{MOE_{95}}{MOE_{90}}=\frac{1.96\times (15/\sqrt{44})}{1.645\times (15/\sqrt{44})}[/tex]
[tex]\frac{MOE_{95}}{MOE_{90}}=\frac{1.96}{1.645}\\\\\frac{MOE_{95}}{MOE_{90}}=1.192\\\\MOE_{95} = 1.192\cdot MOE_{90}[/tex]