Answer:
Velocity is [tex]8\sqrt{2}[/tex] and Acceleration is 8
Step-by-step explanation:
Equation of position of the particle
r(t) = (8sint)i + (8cost)j + (8t)k
1) Velocity of the particle is [tex]\frac{dr}{dt}[/tex]
V(t) = dr/dt = (8cost)i + (-8sint)j + 8k
2) Acceleration of the particle will be [tex]\frac{dv}{dt}[/tex]
A(t) = dv/dt = (-8sint)i + (-8cost)j + 0k
velocity of the particle at t= [tex]\frac{3pi}{2}[/tex]
V([tex]\frac{3pi}{2}[/tex]) = (0)i + (8)j + 8k = [tex]\sqrt{8^2+8^2}[/tex] = [tex]8\sqrt{2}[/tex]
acceleration at t= [tex]\frac{3pi}{2}[/tex]
A([tex]\frac{3pi}{2}[/tex]) = (8)i + (0)j +0k = [tex]\sqrt{8^2}[/tex] = 8