What is the magnitude of the maximum stress that exists at the tip of an internal crack having a radius of curvature of 2.5 $ 10-4 mm (10-5 in.) and a crack length of 2.5 $ 10-2 mm (10-3 in.) when a tensile stress of 170 MPa (25,000 psi) is applied

Respuesta :

Solution :

The maximum stress is given by the equation :

[tex]$\sigma_m = 2\sigma_o (\frac{a}{P_t})^{1/2}$[/tex]

[tex]$\sigma_m$[/tex] is the applied stress = 170 MPa

a is equal to half of the internal crack  [tex]$=\frac{2.5 \times 10^{-2}}{2} \ mm$[/tex]    

[tex]$P_t$[/tex] is the radius of the curvature of the tip of the internal crack = [tex]$2.5 \times 10^{-4} \ mm$[/tex]

So substituting we get,

[tex]$\sigma_m = 2\times 170 (\frac{\frac{2.5 \times 10^{-2}}{2}}{2.5 \times 10^{-4}})^{1/2}$[/tex]

[tex]$\sigma_m$[/tex] = 1700 MPa