Respuesta :

[tex]\sf \dfrac{3^x - 5 \times 3^{(x-2)}}{3^{(x-3)}} \\ \\ \longrightarrow \sf \dfrac{ {3}^{x} }{ {3}^{(x - 3)}} - \frac{5}{ {3}^{(x - 3)} } \times {3}^{(x - 2)} \\ \\ \longrightarrow \sf {3}^{[x - (x - 3)]} - \dfrac{5}{ {3}^{(x - 3)} } \times {3}^{(x - 2)} \\ \\ \longrightarrow \sf {3}^{3} - \dfrac{5}{ {3}^{(x - 3)} } \times \dfrac{ {3}^{x}}{9} \\ \\ \longrightarrow \sf {3}^{3} - \dfrac{5}{ \bigg(\dfrac{ {3}^{x} }{ {3}^{3} }\bigg) } \times \dfrac{ {3}^{x}}{9}\\ \\ \longrightarrow \sf {3}^{3} - \dfrac{ ({3}^{3})( 5)}{ {3}^{x} } \times \dfrac{ {3}^{x}}{9}\\ \\ \sf \longrightarrow {3}^{3} - (5 \times 3) \\ \\ \longrightarrow \sf \: 27 - 15 \\ \\ \longrightarrow \leadsto{\underline{\boxed{\sf{ \pink{ 12}}}}}[/tex]