Ben
contestada

Use complex conjugates to factor the expression [tex]9x^2+36[/tex].

Respuesta :

Answer:

[tex]9x^2+36=9(x+2i)(x-2i)[/tex]

Step-by-step explanation:

We have the expression:

[tex]9x^2+36[/tex]

We can factor this using complex conjugates. Essentially, we will use the difference of two squares:

[tex]a^2-b^2=(a-b)(a+b)[/tex]

First, we can factor out a 9 from our expression. This gives us:

[tex]9(x^2+4)[/tex]

We can now rewrite our expression as:

[tex]9(x^2-(-4))[/tex]

Therefore, our a² is [tex]x^2[/tex] and our b² is -4.

Let’s solve for each of them individually. So, for a:

[tex]a^2=x^2[/tex]

Take the square root of both sides:

[tex]\sqrt{a^2}=\sqrt{x^2}[/tex]

Simplify:

[tex]a=x[/tex]

And for b:

[tex]b^2=-4[/tex]

Take the square root of both sides:

[tex]\sqrt{b^2}=\sqrt{-4}[/tex]

Simplify:

[tex]b=\sqrt{-4}[/tex]

Simplify the negative root using i:

[tex]b=\sqrt{-4}=\sqrt{-1\cdot4}=\sqrt{-1}\cdot\sqrt{4}=i\sqrt{4}=2i[/tex]

Therefore, we have [tex]a=x[/tex] and [tex]b=2i[/tex].

So, by using the difference of two squares:

[tex]9x^2+36=9(x+2i)(x-2i)[/tex]