Answer:
[tex]9x^2+36=9(x+2i)(x-2i)[/tex]
Step-by-step explanation:
We have the expression:
[tex]9x^2+36[/tex]
We can factor this using complex conjugates. Essentially, we will use the difference of two squares:
[tex]a^2-b^2=(a-b)(a+b)[/tex]
First, we can factor out a 9 from our expression. This gives us:
[tex]9(x^2+4)[/tex]
We can now rewrite our expression as:
[tex]9(x^2-(-4))[/tex]
Therefore, our a² is [tex]x^2[/tex] and our b² is -4.
Let’s solve for each of them individually. So, for a:
[tex]a^2=x^2[/tex]
Take the square root of both sides:
[tex]\sqrt{a^2}=\sqrt{x^2}[/tex]
Simplify:
[tex]a=x[/tex]
And for b:
[tex]b^2=-4[/tex]
Take the square root of both sides:
[tex]\sqrt{b^2}=\sqrt{-4}[/tex]
Simplify:
[tex]b=\sqrt{-4}[/tex]
Simplify the negative root using i:
[tex]b=\sqrt{-4}=\sqrt{-1\cdot4}=\sqrt{-1}\cdot\sqrt{4}=i\sqrt{4}=2i[/tex]
Therefore, we have [tex]a=x[/tex] and [tex]b=2i[/tex].
So, by using the difference of two squares:
[tex]9x^2+36=9(x+2i)(x-2i)[/tex]