Given:
Diagonal of the rectangle = 20 inches
The length of the rectangle is to be 8 inches more than twice the width.
To find:
The dimensions of the rectangle.
Solution:
Let width of the rectangle be x inches.
Then, length = 2x+8 inches
We know that, diagonal of a rectangle is
[tex]Diagonal=\sqrt{length^2+width^2}[/tex]
[tex]20=\sqrt{(2x+8)^2+x^2}[/tex]
Taking square both sides.
[tex]400=4x^2+32x+64+x^2[/tex]
[tex]0=5x^2+32x+64-400[/tex]
[tex]0=5x^2+32x-336[/tex]
Splitting the middle term, we get
[tex]5x^2+60x-28x-336=0[/tex]
[tex]5x(x+12)-28(x+12)=0[/tex]
[tex](x+12)(5x-28)=0[/tex]
Using zero product property, we get
[tex]x=-12, x=\dfrac{28}{5}=5.6[/tex]
Side length cannot be negative. So, only value of x is [tex]5.6[/tex].
Now,
Width = 5.6 inches
Length [tex]=2(5.6)+8[/tex]
[tex]=11.2+8[/tex]
[tex]=19.2[/tex] inches
Therefore, the length of rectangle is 19.2 inches and width of the rectangle is 5.6 inches.