contestada

An architect wants to draw a rectangle with a diagonal of 20 inches. The length of the rectangle is to be 8 inches more than twice the width. What dimensions should she make the rectangle?

Respuesta :

Given:

Diagonal of the rectangle = 20 inches

The length of the rectangle is to be 8 inches more than twice the width.

To find:

The dimensions of the rectangle.

Solution:

Let width of the rectangle be x inches.

Then, length = 2x+8 inches

We know that, diagonal of a rectangle is

[tex]Diagonal=\sqrt{length^2+width^2}[/tex]

[tex]20=\sqrt{(2x+8)^2+x^2}[/tex]

Taking square both sides.

[tex]400=4x^2+32x+64+x^2[/tex]

[tex]0=5x^2+32x+64-400[/tex]

[tex]0=5x^2+32x-336[/tex]

Splitting the middle term, we get

[tex]5x^2+60x-28x-336=0[/tex]

[tex]5x(x+12)-28(x+12)=0[/tex]

[tex](x+12)(5x-28)=0[/tex]

Using zero product property, we get

[tex]x=-12, x=\dfrac{28}{5}=5.6[/tex]

Side length cannot be negative. So, only value of x is [tex]5.6[/tex].

Now,

Width = 5.6 inches

Length [tex]=2(5.6)+8[/tex]

            [tex]=11.2+8[/tex]

            [tex]=19.2[/tex] inches

Therefore, the length of rectangle is 19.2 inches and width of the rectangle is 5.6 inches.