Respuesta :

Answer:  VT = 8

==========================================

Work Shown:

V is the midpoint of RT, so RV = VT

RV = 2x+4

VT = RV = 2x+4

RV+VT = RT ... by the segment addition postulate

RV+RV = RT ... replace VT with RV

2*(RV) = RT

2*(2x+4) = 8x .... plug in the given expressions

4x+8 = 8x

8 = 8x-4x

8 = 4x

4x = 8

x = 8/4

x = 2

Which means,

RV = 2x+4 = 2*2+4 = 8

VT = RV = 8

RT = 8x = 8*2 = 16

Note how

RV+VT = 8+8 = 16

which matches with the length of RT to help confirm our answer.

Answer:

[tex] \boxed{line \: vt \: = 8.}[/tex]

Step-by-step explanation:

[tex]if \: \boxed{ line\: rt} = \boxed{ line\: rv} + \boxed{ line\: vt} = 8x \\ then \: \boxed{ line\: rv} = \boxed{ line\: rt} = 2x + 4 \\ hence \to \\ 2(2x + 4) = 8x \\ 4x + 8 = 8x \\ 4x = 8 \\ \boxed{x = 2} \\ \\ if \: x = 2 :then \: \\ 2x + 4 = 2(2) + 4 = 8. \\ therefore \: \boxed{ line\: vt = 8.} [/tex]

♨Rage♨