Respuesta :
Use DeMoivre's formula:
(cos(θ) + i sin(θ))ⁿ = cos(n θ) + i sin(n θ)
If a given number is a 5th root of -i, raising it to the 5th power should return -i.
Since -i = cos(-π/2) + i sin(-π/2), you should check any number with an argument θ such that 5θ = -π/2. This happens only for the last choice:
(cos(7π/10) + i sin(7π/10))⁵ = cos(35π/10) + i sin(35π/10)
and 35π/10 is equivalent to -π/2 (modulo 2π).
The 5th root of -i is (d) [tex]\mathbf{(cos(\frac{7\pi}{10}) + i sin(\frac{7\pi}{10}))}[/tex]
By DeMoivre's formula, we have:
[tex]\mathbf{(cos(\theta) + i sin(\theta))^n = cos(n \theta) + i sin(n \theta)}[/tex]
The 5th root of -i means that: n = 5.
So, we have:
[tex]\mathbf{(cos(\theta) + i sin(\theta))^5 = cos(5 \theta) + i sin(5 \theta)}[/tex]
Set [tex]\mathbf{\theta}[/tex] to any expression such that:
[tex]\mathbf{\theta = \frac{7\pi}{10}}[/tex]
So, we have:
[tex]\mathbf{(cos(\frac{7\pi}{10}) + i sin(\frac{7\pi}{10}))^5 = cos(5 \times \frac{7\pi}{10}) + i sin(5 \times \frac{7\pi}{10})}[/tex]
Expand
[tex]\mathbf{(cos(\frac{7\pi}{10}) + i sin(\frac{7\pi}{10}))^5 = cos(\frac{35\pi}{10}) + i sin(\frac{35\pi}{10})}[/tex]
Take 5th roots of both sides
[tex]\mathbf{(cos(\frac{7\pi}{10}) + i sin(\frac{7\pi}{10})) = \sqrt[5]{cos(\frac{35\pi}{10}) + i sin(\frac{35\pi}{10})}}[/tex]
This means that:
[tex]\mathbf{(cos(\frac{7\pi}{10}) + i sin(\frac{7\pi}{10}))}[/tex] is the 5th root of -i
Hence, option (d) is correct
Read more about complex numbers at:
https://brainly.com/question/20566728