Answer:
[tex]C=3.54\cdot 10^{-12}\ F[/tex]
[tex]Q=3.186\cdot 10^{-11}\ c[/tex]
Explanation:
Capacitance of a parallel-plate capacitor
The parallel plate capacitor consists of two identical conducting plates, each having a surface area A, separated by a distance d with no material between the plates.
The capacitance of the capacitor can be calculated as follows:
[tex]\displaystyle C=\epsilon_o\frac{A}{d}[/tex]
Where [tex]\epsilon_o[/tex] is the permittivity of free space. Its numerical value in SI units is:
[tex]\epsilon_o=8.85 \cdot 10^{-12}\ F/m[/tex]
a.
The capacitor of the question has an area of A=4 cm^2 and the plates are separated by d=1 mm. Both magnitudes must be converted to SI:
[tex]\displaystyle A=4\ cm^2\left(\frac{1\ m}{100\ cm}\right)^2=4\cdot 10^{-4}\ m^2[/tex]
[tex]\displaystyle d=1\ mm\frac{1\ m}{1000\ mm}=1\cdot 10^{-3}\ m[/tex]
Now calculate the capacitance:
[tex]\displaystyle C=8.85 \cdot 10^{-12}\frac{4\cdot 10^{-4}\ m^2}{1\cdot 10^{-3}\ m}[/tex]
[tex]C=3.54\cdot 10^{-12}\ F[/tex]
b.
The charge Q stored in any capacitor C when a voltage V is applied is given by the equation:
Q = CV
Entering the known values into this equation gives:
[tex]Q = 3.54\cdot 10^{-12}\cdot 9[/tex]
[tex]Q=3.186\cdot 10^{-11}\ c[/tex]