Answer:
Approximately [tex]92.9\; \rm mL[/tex].
Explanation:
Look up relevant relative atomic mass data on a modern periodic table:
Calculate the formula mass of [tex]\rm Al_2(SO_4)_3[/tex]:
[tex]M(\mathrm{Al_2(SO_4)_3}) = 2 \times 26.982 + 3 \times (32.06 + 4 \times 15.999) = 342.132\; \rm g \cdot mol^{-1}[/tex].
Calculate the number of moles of [tex]\rm Al_2(SO_4)_3[/tex] formula units that corresponds to [tex]110\; \rm g[/tex]:
[tex]\displaystyle n(\mathrm{Al_2(SO_4)_3}) = \frac{m}{M} = \frac{110\; \rm g}{342.132\; \rm g \cdot mol^{-1}} \approx 0.322\; \rm mol[/tex].
Calculate the volume of a [tex]3.25\; \rm M[/tex] [tex]\rm Al_2(SO_4)_3[/tex] solution that would contain [tex]0.322\; \rm mol[/tex] of [tex]\rm Al_2(SO_4)_3\![/tex] formula units. Note, that the unit of concentration "[tex]\rm M[/tex]" is equivalent to [tex]\rm mol \cdot L^{-1}[/tex].
[tex]\displaystyle V = \frac{n}{c} = \frac{0.322\; \rm mol}{3.25\; \rm mol \cdot L^{-1}} \approx 0.0989\; \rm L[/tex].
Convert that to milliliters as requested:
[tex]\displaystyle V \approx 0.0989\; \rm L \times \frac{1000\; \rm mL}{1\; \rm L} = 98.9\; \rm mL[/tex].