Answer:
The rock takes 4.18 seconds to hit the ground
Step-by-step explanation:
Function Model
The height of a rock h, after t seconds, can be modeled by the polynomial function:
[tex]h(t)=-4.9t^2+20t+2, t\geq 0[/tex]
When the rock hits the ground, the height is 0, thus we need to find the value of t such as:
[tex]-4.9t^2+20t+2=0[/tex]
A quadratic equation can be expressed as:
[tex]at^2+bt+c=0[/tex]
where a,b, and c are constants.
Solving with the quadratic formula:
[tex]\displaystyle t=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
The values for the given equation are:
a=-4.9, b=20, c=2
Applying the formula:
[tex]\displaystyle t=\frac{-20\pm \sqrt{20^2-4(-4.9)(2)}}{2(-4.9)}[/tex]
[tex]\displaystyle t=\frac{-20\pm \sqrt{400+39.2}}{-9.8}[/tex]
[tex]\displaystyle t=\frac{-20\pm 20.957}{-9.8}[/tex]
There are two possible solutions:
[tex]\displaystyle t=\frac{-20- 20.957}{-9.8}=4.18[/tex]
[tex]\displaystyle t=\frac{-20+ 20.957}{-9.8}=-0.1[/tex]
Since t > 0, the only solution is t=4.19 seconds
The rock takes 4.18 seconds to hit the ground