Answer:
[tex]z = \boxed{ \frac{59 + pd}{2 - p} }[/tex]
General Formulas and Concepts:
Pre-Algebra
Distributive Property
Algebra I
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Terms/Coefficients
Step-by-step explanation:
Step 1: Define
Identify given.
[tex]\displaystyle -p(d + z) = -2z + 59[/tex]
Step 2: Solve for z
- [Distributive Property] Distribute -p:
[tex]\displaystyle \begin{aligned}-p(d + z) = -2z + 59 & \rightarrow -pd -pz = -2z + 59 \\\end{aligned}[/tex] - [Addition Property of Equality] Add -2z to both sides:
[tex]\displaystyle \begin{aligned}-p(d + z) = -2z + 59 & \rightarrow -pd -pz = -2z + 59 \\& \rightarrow -pd -pz + 2z = 59 \\\end{aligned}[/tex] - [Addition Property of Equality] Add -pd to both sides:
[tex]\displaystyle \begin{aligned}-p(d + z) = -2z + 59 & \rightarrow -pd - pz = -2z + 59 \\& \rightarrow -pd - pz + 2z = 59 \\& \rightarrow -pz + 2z = 59 + pd \\\end{aligned}[/tex] - Factor:
[tex]\displaystyle \begin{aligned}-p(d + z) = -2z + 59 & \rightarrow -pd - pz = -2z + 59 \\& \rightarrow -pd - pz + 2z = 59 \\& \rightarrow -pz + 2z = 59 + pd \\& \rightarrow z(-p + 2) = 59 + pd \\\end{aligned}[/tex] - [Division Property of Equality] Divide -p + 2 on both sides:
[tex]\displaystyle \begin{aligned}-p(d + z) = -2z + 59 & \rightarrow -pd - pz = -2z + 59 \\& \rightarrow -pd - pz + 2z = 59 \\& \rightarrow -pz + 2z = 59 + pd \\& \rightarrow z(-p + 2) = 59 + pd \\& \rightarrow z = \boxed{ \frac{59 + pd}{2 - p} } \\\end{aligned}[/tex]
∴ we have solved the given equation for z.
___
Learn more about Algebra I: https://brainly.com/question/16452009
___
Topic: Algebra I