Answer:
The answer is "1832".
Explanation:
The PVAF(r,n) start value[tex]= \frac{(1+r)^{n-1} -1 \ \ +1}{r \times (1+r)^n-1}[/tex]
The PVAF(r,n) end value[tex]= \frac{(1+r)^{n} -1}{r \times (1+r)^n}[/tex]
The PVF(r,n) value [tex]= \frac{1}{(1+r)^n}[/tex]
[tex]r = \text{Rate of dirscount} \\\\n = terms[/tex]
[tex]\text{Present Value= Monthly rent} \times PVAF[/tex]
PVAF(20%, 3) starting = 2.5278
PVAF(20%, 3) ending = 2.1065
PVAF(20%, 3) starting = 5787
calculating the lease payment of present value:
[tex]present \ value = Lease\ payment \times PVAF(10 \%,3) starting[/tex]
[tex]=3609 \times 2.5278\\\\=9122.75[/tex]
existing importance by busing excluding annual servicing
[tex]\text{present value = cost - sale value} \times PVF(20 \%,3)[/tex]
[tex]=6113-1469\times 0.5787 \\\\=5262.88[/tex]
Calculating the annual maintanance=[tex]\frac{\text{present value of leasing -buying}}{ PVAF(20 \%,3) ending}[/tex]
[tex]=\frac{3859.87}{2.1065}\\\\=1832.32 \ \ \ or \ \ \ 1832[/tex]