A stone is dropped into a lake, creating a circular ripple that travels outward at a speed of 70 cm/s. Find the rate at which the area within the circle is increasing after each of the following. (a) after 1 s $40 cm2/s (b) after 4 s cm2/s (c) after 6 s cm2/s

Respuesta :

Answer:

(a) 9800π cm²/s

(b) 39200π cm²/s

(c) 58800π cm²/s

Step-by-step explanation:

As we know,

The area of circle is:

[tex]A= \pi r^2[/tex]

[tex]\frac{dA}{dt}=2 \pi r\frac{dr}{dt}[/tex]

The given value is:

[tex]\frac{dr}{dt} =70 \ cm/s[/tex]

Now,

(a)

After 1 second,

r = 70×1

 = 70 cm

⇒  [tex]\frac{dA}{dt}=2\pi(70)\times (70)[/tex]

          [tex]=9800 \pi \ cm^2/s[/tex]

(b)

After 2 second,

r = 70×4

 = 280 cm

⇒  [tex]\frac{dA}{dt}=2\pi \ (280)\times (70)[/tex]

          [tex]39200\pi \ cm^2/s[/tex]

(c)

After 6 seconds,

r = 70×6

 = 420 cm

⇒  [tex]\frac{dA}{dt}=2\pi \ (420)\times (70)[/tex]

          [tex]58800\pi \ cm^2/s[/tex]

The rate will be:

(a) 9800 π cm²/s

(b) 39200 π cm²/s

(c) 58800 π cm²/s

Circle:

A circle seems to be a closed object or structure generated by tracing a point that travels together in plane at quite a constant distances from either a specific location.

According to the question,

Speed, [tex]\frac{dr}{dt}[/tex] = 70 cm/s

We know,

The area of circle:

→ A = πr²

  [tex]\frac{dA}{dt}[/tex] = 2πr[tex]\frac{dr}{dt}[/tex]

(a) After 1 s, the rate be:

r = 70 × 1

  = 70 cm

[tex]\frac{dA}{dt}[/tex] = 2π(70) × 70

    = 9800 π cm²/s

(b) After 2 s, the rate be:

r = 70 × 4

 = 280 cm

[tex]\frac{dA}{dt}[/tex] = 2π(280) × 70

    = 39200 π cm²/s

(c) After 6 s, the rate be:

r = 70 × 6

  = 420 cm

[tex]\frac{dA}{dt}[/tex] = 2π(420) × 70

    = 58800 π cm²/s

Thus the response above is correct.

Find out more information about area of circle here:

https://brainly.com/question/12069107

RELAXING NOICE
Relax