Answer: 0.8185
Step-by-step explanation:
Let X represents the tree diameters that are distributed normally.
Given: Mean [tex]\mu=9.6\text{ inches}[/tex], Standard deviation [tex]\sigma=2.4\text{ inches}[/tex]
The probability that its diameter will fall between 7.2 inches and 14.4 inches will be:
[tex]P(7.2<X<14.4)=P(\dfrac{7.2-9.6}{2.4}<\dfrac{X-\mu}{\sigma}<\dfrac{14.4-9.6}{2.4})\\\=P(-1<Z<2)\ \ \ \ [Z=\dfrac{X-\mu}{\sigma}]\\\\=P(Z<2)-P(Z<-1)\\\\=P(Z<2)-(1-P(Z<1))\\\\=0.9772-(1-0.8413)=0.8185\ [\text{By p-value table}][/tex]
Hence, required probability = 0.8185