Consider the polynomial functions, f(x) and g(x), below to answer the following questions
f(x) = 3x3 - 2x2 + kx - 3
a. When f(x) is divided by (x + 2), the remainder is 3. Find the value of k.

Respuesta :

Answer:

k =  −3x^3 + 2x^2 + y + 3/x

Step-by-step explanation:

Let's solve for k.

y = 3x^3 − 2x^2 + kx − 3

Step 1: Flip the equation.

3x^3 + kx − 2x^2 − 3 = y

Step 2: Add -3x^3 to both sides.

3x^3 + kx − 2x^2 − 3 + − 3x^3 = y + − 3x^3

kx − 2x^2 − 3 = − 3x^3 + y

Step 3: Add 2x^2 to both sides.

kx − 2x^2 − 3 + 2x^2 = − 3x^3 + y +2x^2

kx − 3 = − 3x^3 + 2x^2 + y

Step 4: Add 3 to both sides.

kx − 3 + 3 = −3x^3 + 2x^2 + y + 3

kx = − 3x^3 + 2x^2 + y + 3

Step 5: Divide both sides by x.

kx/x  =  −3x^3 + 2x^2 + y + 3/x

k =  −3x^3 + 2x^2 + y + 3/x

ANSWER:

k =  −3x^3 + 2x^2 + y + 3/x

HOPE THIS HELPS!

PLEASE MARK BRAINLIEST!

ACCESS MORE
EDU ACCESS
Universidad de Mexico