Respuesta :
Answer:
[tex]m = \frac{4}{3}[/tex] ---- Slope of LK
[tex]m = -\frac{3}{5}[/tex] ---- Slope of LM
[tex]D = 5[/tex] ---- Length of LK
[tex]D = \sqrt{34}[/tex] --- Length of LM
Anthony is incorrect
Step-by-step explanation:
See attachment for complete question.
From the attachment, we have:
[tex]K = (-4,8)[/tex]
[tex]L = (-7,4)[/tex]
[tex]M = (-2,1)[/tex]
Solving (a): Slope of LK
Slope (m) is calculated as thus:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
Where
[tex](x_1,y_1) = (-4,8)[/tex] ----- K
[tex](x_2,y_2) = (-7,4)[/tex] ------ L
[tex]m = \frac{4 - 8}{-7 - (-4)}[/tex]
[tex]m = \frac{4 - 8}{-7 +4}[/tex]
[tex]m = \frac{-4}{-3}[/tex]
[tex]m = \frac{4}{3}[/tex]
Slope of LM
Slope (m) is calculated as thus:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
Where
[tex](x_1,y_1) = (-7,4)[/tex] ---- L
[tex](x_2,y_2) = (-2,1)[/tex] ------ M
[tex]m = \frac{1 - 4}{-2 - (-7)}[/tex]
[tex]m = \frac{1 - 4}{-2 +7}[/tex]
[tex]m = \frac{-3}{5}[/tex]
[tex]m = -\frac{3}{5}[/tex]
Solving (b): Length of LK and LM
Here, we have to calculate the length using distance formula;
Distance (D) is calculated as thus:
[tex]D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]
For LK
[tex](x_1,y_1) = (-4,8)[/tex] ----- K
[tex](x_2,y_2) = (-7,4)[/tex] ------ L
[tex]D = \sqrt{(-7 - (-4))^2 + (4 - 8)^2}[/tex]
[tex]D = \sqrt{(-7 +4)^2 + (4 - 8)^2}[/tex]
[tex]D = \sqrt{(-3)^2 + (-4)^2}[/tex]
[tex]D = \sqrt{9 + 16}[/tex]
[tex]D = \sqrt{25}[/tex]
[tex]D = 5[/tex]
For LM
[tex](x_1,y_1) = (-7,4)[/tex] ---- L
[tex](x_2,y_2) = (-2,1)[/tex] ------ M
[tex]D = \sqrt{(-2 - (-7))^2 + (1 - 4)^2}[/tex]
[tex]D = \sqrt{(-2 +7)^2 + (1 - 4)^2}[/tex]
[tex]D = \sqrt{(5)^2 + (-3)^2}[/tex]
[tex]D = \sqrt{25 + 9}[/tex]
[tex]D = \sqrt{34}[/tex]
[tex]D = 5.83[/tex]
The above findings is not enough to conclude if Anthony is correct or incorrect.
We need to calculate the distance of KM using the same formula;
[tex](x_1,y_1) = (-4,8)[/tex] ----- K
[tex](x_2,y_2) = (-2,1)[/tex] ------ M
D is calculated as thus:
[tex]D = \sqrt{(-2 - (-4))^2 + (1 - 8)^2}[/tex]
[tex]D = \sqrt{(-2 +4)^2 + (-7)^2}[/tex]
[tex]D = \sqrt{(2)^2 + (-7)^2}[/tex]
[tex]D = \sqrt{4 + 49}[/tex]
[tex]D = \sqrt{53}[/tex]
Base on this, we can conclude that Anthony's claim is incorrect.
The triangle is not an isosceles triangle because no two sides are equal
