Answer:
The volume of the solid V = 41601.6 π
Step-by-step explanation:
From the given information:
The volume of the shaded region bounded by rotating the shaded region about the y-axis is: dV
[tex]dV = \pi (-1x^2 +3x+18)^2 ((x+dx)^2 -(x)^2)[/tex]
[tex]dV =2 \pi x (-1x^2 +3x+18)^2 \ . dx[/tex]
[tex]dV =2 \pi x (-1x^2 +3x+18) ( -1x^2 +3x + 18). dx[/tex]
[tex]dV =2 \pi x (1x^4 -3x^3 -18x^2 -3x^3 +9x^2 +54x -18x^2 +54x + 324 ) \ .dx[/tex]
[tex]dV =2 \pi x (1x^4 -3x^3-3x^3 -18x^2 +9x^2 -18x^2 +54x +54x +324) \ .dx[/tex]
[tex]dV =2 \pi x (1x^4 -6x^3 -27x^2 +9x^2+ 108x +324) \ .dx[/tex]
[tex]\implies \int ^V_o \ dv = 2 \pi \int ^6_0 (1x^5 -6x^4 -27x^3+108x^2 +324x) \ dx[/tex]
[tex]V = 2 \pi \begin {bmatrix} \dfrac{1x^6}{6} - \dfrac{6x^6}{5} - \dfrac{27x^4}{4}+ \dfrac{108x^3}{3}+ \dfrac{324x^2}{2} \end {bmatrix}^6_0[/tex]
[tex]V = 2 \pi \begin {bmatrix} \dfrac{1(6)^6}{6} - \dfrac{6(6)^6}{5} - \dfrac{27(6)^4}{4}+ \dfrac{108(6)^3}{3}+ \dfrac{324(6)^2}{2} -0\end {bmatrix}[/tex]
V = 2π (20800.8)
V = 41601.6 π