Here is the full question:
An atom of argon has a radius of 71 .pm and the average orbital speed of the electrons in it is about 3.9 × 10⁷ m/s. Calculate the least possible uncertainty in a measurement of the speed of an electron in an atom of argon. Write your answer as a percentage of the average speed, and round it to significant digits.
Answer:
Explanation:
From the above information:
The radius of an atom of argon = 71 .pm = 71 × 10⁻¹² m
The diameter of the atom of argon Δx =142 × 10⁻¹² m
According to Heisenberg's Uncertainty Principle,
[tex]\Delta x. \Delta p_x \geq \dfrac{h}{2}[/tex]
[tex]\Delta x. \Delta V \geq \dfrac{h}{4 \pi m_e}[/tex]
[tex]\Delta V \geq \dfrac{h}{4 \pi m_e \Delta_x}[/tex]
[tex]\Delta V \geq \dfrac{6.634 \times 10^{-34} \ J.s}{4 \pi \times 9.1 \times 10^{-3} \ kg \times 142 \times 10^{-12} \ m}[/tex]
[tex]\Delta V \geq \dfrac{6.634 \times 10^{-34} \ J.s}{1.62382641 \times 10^{-11} \ kg.m}[/tex]
[tex]\Delta V \geq 4.08 \times 10^5 \ m/s[/tex]
where; the average speed [tex]V_{avg}[/tex] = 3.9 10⁷ m/s
∴
The percentage of the average speed is expressed as a fraction of:
[tex]\% = \dfrac{4.08 \times 10^5}{3.9 \times 10^7}\times 100[/tex]
[tex]\% =1.0462[/tex]
[tex]V_{avg } = 1.046 \times 10^0[/tex]
[tex]\mathbf{V_{avg }\simeq 1.0 \%}[/tex]