Answer:
a)[tex]1.3887943865 \times 10^{-11}[/tex]
b)P(X>5)=1
Step-by-step explanation:
[tex]P(X=x)=\frac{e^{-\lambda} \lambda^k}{k!}[/tex]
We are given that Messages arrive at a computer at an average rate of 25 messages per second.
[tex]\lambda = 25[/tex]
a) Find the probability that no message arrive in 1 second.
[tex]P(X=0)=\frac{e^{-25} (25)^0}{0!}\\P(X=0)=\frac{e^{-25} (25)^0}{0!}\\P(X=0)=1.3887943865 \times 10^{-11}[/tex]
b) Find the probability that more than 5 messages arrive in a 10-second period.
[tex]P(X>5)=1-P(X \leq 5)[/tex]
[tex]P(X>5)=1-\sum_{0}^{10} (P(X=0)+P(X=1)+........+P(X=5))[/tex]
P(X>5)=1