Answer:
Step-by-step explanation:
[tex]f(x)=x^2-12x+46\\a=1\,,\ \ b=-12\\\\[/tex]
Vertex form of an equation of a quadratic function: f(x)=a(x-h)²+k, where vertex is (h, k) and:
[tex]h=\dfrac{-b}{2a}\,,\ \ k=f(h)\\\\\\h=\dfrac{-(-12)}{2\cdot1}=\dfrac{12}{2}=6\\\\k=f(6)=6^2-12\cdot6+46=36-72+46=10[/tex]