Answer:
Step-by-step explanation:
86,101,116,131,146,...
a=86
c.d d=101-86=15
explicit formula
[tex]a_{n}=a+(n-1)d\\a_{n}=86+(n-1)15=86+15n-15=71+15n,n \in I,n>0\\[/tex]
recursive formula
[tex]a_{n}=a_{n-1}+15,a_{1}=86,n \in I,n \geq 2[/tex]
2.
112,110,108,106,104,...
a=112
c.d d=110-112=-2
explicit formula
[tex]a_{n}=112+(n-1)(-2) =112-2n+2=114-2n,n \in I,n>0[/tex]
recursive formula
[tex]a_{n}=a_{n-1}-2,a_{1}=112,n \in I,n \geq 2[/tex]